ISOLATION, IDENTIFICATION, AND BIOLOGICAL CHARACTERIZATION OF CHITINASE-PRODUCING ACTINOMYCES FROM YOK DON NATIONAL PARK

Ngày nhận bài: 15-08-2020

Ngày duyệt đăng: 25-12-2023

DOI:

Lượt xem

56

Download

6

Chuyên mục:

NÔNG HỌC

Cách trích dẫn:

Tran, D., Huynh, T., & Nguyen, A. (2024). ISOLATION, IDENTIFICATION, AND BIOLOGICAL CHARACTERIZATION OF CHITINASE-PRODUCING ACTINOMYCES FROM YOK DON NATIONAL PARK. Tạp Chí Khoa học Nông nghiệp Việt Nam, 21(12), 1517–1526. http://testtapchi.vnua.edu.vn/index.php/vjasvn/article/view/1223

ISOLATION, IDENTIFICATION, AND BIOLOGICAL CHARACTERIZATION OF CHITINASE-PRODUCING ACTINOMYCES FROM YOK DON NATIONAL PARK

Dinh Minh Tran (*) 1 , To Uyen Huynh 1 , Anh Dzung Nguyen 1

  • 1 Institute of Biotechnology and Environment, Tay Nguyen University
  • Từ khóa

    Luteimicrobium album, chitinase activity, biofilm formation, plant-growth promotion, biocontrol

    Tóm tắt


    Developing new biofertilizers has been an area of great interest in modern agriculture. This study focused on actinobacteria possessing high chitinase activity, biofilm formation, plant growth promotion, and antifungal activity. Two chitinolytic actinomyces strains, YSS-3.3 and YWS-5.1, were isolated from soil and chitin flake samples collected from Yok Don National Park in the Central Highlands, Vietnam. These strains exhibited high specific activities of chitinases and formed biofilms. 16S rRNA gene analysis revealed that both strains had the closest evolutionary relationship to Luteimicrobium albumwith 99.41% sequence similarity and 100% query cover. Plate assays showed that the actinomyces had cellulolytic and amylolytic activities; insoluble zinc, potassium, and phosphate solubilization; and produced siderophores. UV-HPLC analysis revealed that the bacteria secreted phytohormones (IAA, GA3, and zeatin) into their cultures. Dual culture assay indicated that the bacteria possessed antifungal activity against Fusarium oxysporum. These analyses indicated that the isolated actinomyces are good candidates for further studies concerning crop production. These strainsare also potent resources for further research on their genome sequences and systems of chitinases, cellulases, and amylases.

    Tài liệu tham khảo

    Amri M., Rjeibi M.R., Gatrouni M., Mateus D.M.R., Asses N., Pinho H.J.O. & Abbes C. (2023) Isolation, identification, and characterization of phosphate-solubilizing bacteria from Tunisian soils. Microorganisms. 11(3):783.

    Brenner D.J., Vos P.D., Garrity G.M., Goodfellow M., Krieg N.R., Rainey F.A. & Schleifer K.H. (2005). Bergey's manual of systematic bacteriology. Springer, NY.

    Cavite H.J.M., Mactal A.G., Evangelista E.V. &Cruz J.A. (2021). Growth and yield response of upland rice to application of plant growth-promoting rhizobacteria. J Plant Growth Regul. 40: 494-508.

    Fathallh Eida M., Nagaoka T., Wasaki J. & Kouno K. (2012) Isolation and characterization of cellulose-decomposing bacteria inhabiting sawdust and coffee residue composts. Microbes Environ. 27(3):226-233.

    Gandhi A. & Muralidharan G. (2016). Assessment of zinc solubilizing potentiality of Acinetobacter sp. isolated from rice rhizosphere. Eur J Soil Biol. 76: 1-8.

    Ghavami N., Alikhani H.A., Pourbabaei A.A. & Besharati H. (2017). Effects of two new siderophore-producing rhizobacteria on growth and iron content of maize and canola plants. J Plant Nutr. 40: 736-746.

    Gu Q., Yang Y., Yuan Q., Shi G., Wu L., Lou Z., Huo R., Wu H., Borriss R. & Gao X.(2017). Bacillomycin D Produced by Bacillus amyloliquefaciensis involved in the antagonistic interaction with the plant-pathogenic fungus Fusarium graminearum. Appl Environ Microbiol.83:e01075-17.

    Hamada M., Yamamura H., Komukai C., Tamura T., Suzuki K. & Hayakawa M. (2012). Luteimicrobium albumsp. nov., a novel actinobacterium isolated from a lichen collected in Japan, and emended description of the genus Luteimicrobium. J Antibiot 65(8): 427-431.

    Itoh Y., Takahashi K., Takizawa H., Nikaidou N., Tanaka H., Nishihashi H., Watanabe T. & Nishizawa Y. (2003). Family 19 chitinase of Streptomyces griseusHUT6037 increases plant resistance to the fungal disease. Biosci Biotechnol Biochem. 67(4): 847-855.

    Janati W., Mikou K., El Ghadraoui L. & Errachidi F. (2022) Isolation and characterization of phosphate solubilizing bacteria naturally colonizing legumes rhizosphere in Morocco. Front Microbiol. 13: 958300.

    Juturu V. & Wu J.C. (2014). Microbial cellulases engineering, production and applications. Renew Sustain Energy Rev. 33: 188-203.

    Kawase T., Saito A., Sato T., Kanai R., Fujii T., Nikaidou N., Miyashita K. & Watanabe T. (2004). Distribution and phylogenetic analysis of family 19 chitinases in Actinobacteria. Appl Environ Microbiol. 70(2): 1135-1144.

    Kawase T., Yokokawa S., Saito A., Fujii T., Nikaidou N., Miyashita K. & Watanabe T. (2006). Comparison of enzymatic and antifungal properties between family 18 and 19 chitinases from S. coelicolorA3(2). Biosci Biotechnol Biochem 70(4): 988-998.

    Kudoyarova G.R., Arkhipova T.N. & Melent’ev A.I. (2015). Role of bacterial phytohormones in plant growth regulation and their development. In: Maheshwari D (eds) Bacterial metabolites in sustainable agroecosystem. Sustainable Development and Biodiversity. Springer. 12.

    Lacombe-Harvey M.E., Brzezinski R. & Beaulieu C. (2018) Chitinolytic functions in actinobacteria: ecology, enzymes, and evolution. Appl Microbiol Biotechnol. 102(17): 7219-7230.

    Lee Y.S., Anees M., Park Y.S., Kim S.B., Jung W.J. & Kim K.Y. (2014). Purification and properties of a Meloidogyne-antagonistic chitinase from Lysobacter capsiciYS1215. Nematology 16: 63-72.

    Lin W., Lin M., Zhou H., Wu H., Li Z. & Lin W. (2019) The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards. PLoS One. 14(5): e0217018.

    Louden B.C., Haarmann D. & Lynne A.M. (2011) Use of blue agar CAS assay for siderophore detection. J Microbiol Biol Edu. 12(1): 51-53.

    Miwa N., Mitsuhashi M. & Kajiura T. (2019) .Screening of microorganisms producing a novel protein-asparaginase and characterization of the enzyme derived from Luteimicrobium album. J Biosci Bioeng. 127(3): 281-287.

    Morikawa M. (2006) Beneficial biofilm formation by industrial bacteria Bacillus subtilisand related species. J Biosci Bioeng. 101(1): 1-8.

    Nguyen D.N., Wang S.L., Nguyen A.D., Doan M.D., Tran D.M., Nguyen T.H., Ngo V.A., Doan C.T., Tran T.N. & Do V.C. (2021a). Potential Application of Rhizobacteria Isolated from the Central Highland of Vietnam as an Effective Biocontrol Agent of Robusta Coffee Nematodes and as a Bio-Fertilizer. Agronomy. 11(9):1887.

    Nguyen S.D., Trinh T.H.T., Tran T.D., Nguyen T.V., Chuyen H.V., Ngo V.A. & Nguyen A.D. (2021b). Combined Application of Rhizosphere Bacteria with Endophytic Bacteria Suppresses Root Diseases and Increases Productivity of Black Pepper (Piper nigrum L.). Agriculture 11(1):15.

    Othman N.M.I., Othman R., Zuan A.T.K., Shamsuddin A.S., Zaman N.B.K., Sari N.A. & Panhwar Q.A. (2022). Isolation, characterization, and identification of zinc-solubilizing bacteria (ZSB) from Wetland rice fields in Peninsular Malaysia. Agriculture 12(11):1823.

    Paul J.S., Gupta N., Beliya E., Tiwari S. & Jadhav S.K. (2021). Aspects and recent trends in microbial -amylase: a review. Appl Biochem Biotechnol. 193: 2649-2698.

    Pentekhina I., Hattori T., Tran D.M., Shima M., Watanabe T., Sugimoto H. & Suzuki K. (2020). Chitinase system of Aeromonas salmonicida, and characterization of enzymes involved in chitin degradation. Biosci Biotechnol Biochem. 84(9):1347-6947.

    Seneviratne G., Zavahir J.S., Bandara W.M.M.S. & Weerasekara M.L.M.A.W. (2008). Fungal-bacterial biofilms: their development for novel biotechnological applications. World J Microbiol Biotechnol 24: 739-743.

    Sharma S., Verma P.P. & Kaur M. (2014). Isolation, purification and estimation of IAA from Pseudomonassp. using High-performance liquid chromatography. J Pure Appl Microbiol. 8(4): 1-6.

    Sun F., Ou Q., Wang N., Guo .Z, Ou Y., Li N. & Peng C. (2020) Isolation and identification of potassium-solubilizing bacteria from Mikania micrantharhizospheric soil and their effect on M. micranthaplants. Glob Ecol Conserv. 23: e01141.

    Tran D.M., Huynh T.U., Nguyen T.H., Do T.O., Nguyen Q.V. & Nguyen A.D. (2022a). Molecular analysis of genes involved in chitin degradation from the chitinolytic bacterium Bacillus velezensis. Antonie Van Leeuwenhoek. 115(2): 215-231.

    Tran D.M., Huynh T.U., Nguyen T.H., Do T.O., Pentekhina I., Nguyen Q.V. & Nguyen A.D. (2022b) Expression, purification, and basic properties of a novel domain structure possessing chitinase from Escherichia colicarrying the family 18 chitinase gene of Bacillus velezensisstrain RB.IBE29. Mol Biol Rep. 49(5): 4141-4148.

    Tran D.M., Sugimoto H., Nguyen D.A., Watanabe T. & Suzuki K. (2018c) Identification and characterization of chitinolytic bacteria isolated from a freshwater lake. Biosci Biotechnol Biochem. 82(2):343-355.

    Trinh T.H.T., Wang S.L., Nguyen V.B., Tran M.D., Doan C.T., Vo T.P.K., Huynh V.Q. & Nguyen A.D.(2019) A potent antifungal rhizobacteria Bacillus velezensisisolated from black pepper. Res Chem Intermed.45: 5309-5323.

    Tsujibo H., Okamoto T., Hatano N., Miyamoto K., Watanabe T., Mitsutomi M. & Inamori Y. (2000) Family 19 chitinases from Streptomyces thermoviolaceusOPC-520: molecular cloning and characterization. Biosci Biotechnol Biochem. 64(11): 2445-2453.