ẢNH HƯỞNG CỦA MẶN VÀ NẤM RỄ ĐẾN CẤU TRÚC GIẢI PHẪU CỦA CÂY THỔ SÂM CAO LY (Talinum paniculatum(Jacq.) Gaertn.) TẠIGIA LÂM, HÀ NỘI

Ngày nhận bài: 15-12-2021

Ngày duyệt đăng: 22-05-2023

DOI:

Lượt xem

0

Download

0

Chuyên mục:

NÔNG HỌC

Cách trích dẫn:

Mai, N., Hoàng, Đinh, Nhàn, Đoàn, Phíp, N., Trang, P., Hà, P., & Hải, N. (2024). ẢNH HƯỞNG CỦA MẶN VÀ NẤM RỄ ĐẾN CẤU TRÚC GIẢI PHẪU CỦA CÂY THỔ SÂM CAO LY (Talinum paniculatum(Jacq.) Gaertn.) TẠIGIA LÂM, HÀ NỘI. Tạp Chí Khoa học Nông nghiệp Việt Nam, 21(5), 543–551. http://testtapchi.vnua.edu.vn/index.php/vjasvn/article/view/1135

ẢNH HƯỞNG CỦA MẶN VÀ NẤM RỄ ĐẾN CẤU TRÚC GIẢI PHẪU CỦA CÂY THỔ SÂM CAO LY (Talinum paniculatum(Jacq.) Gaertn.) TẠIGIA LÂM, HÀ NỘI

Nguyễn Phương Mai (*) 1 , Đinh Thái Hoàng 1 , Đoàn Thị Thanh Nhàn 2 , Ninh Thị Phíp 1 , Phạm Thị Huyền Trang 1 , Phùng Thị Thu Hà 1 , Nguyễn Thị Thanh Hải 1

  • 1 Khoa Nông học, Học viện Nông nghiệp Việt Nam
  • 2 Hội Sinh học Việt Nam
  • Từ khóa

    Thổ sâm cao ly, Talinum paniculatum, mặn, AMF, cấu trúc giải phẫu

    Tóm tắt


    Nghiên cứu này nhằm đánh giá sự thay đổi cấu trúc giải phẫu của cây Thổ sâm cao ly trong điều kiện mặn và vai trò của nấm rễ cộng sinh (AMF) trong việc giảm tác hại của mặn trên cây Thổ sâm cao ly. Thí nghiệm được thực hiện trong nhà lưới tại Khoa Nông học, Học viện Nông nghiệp Việt Nam. Thí nghiệm được thiết kế với 6 công thức (CT1: đối chứng tưới nước; CT2: tưới nước + 4g AMF; CT3: tưới 0,2% NaCl; CT4: tưới 0,4% NaCl; CT5: tưới 0,2% NaCl+ 4g AMF, CT6: tưới 0,4% NaCl + 4g AMF) bố trí theo kiểu ngẫu nhiên hoàn toàn. Kết quả nghiên cứu đã chỉ ra: Stress mặn đã làm thay đổi cấu trúc giải phẫu rễ, thân, lá của cây Thổ sâm cao ly. Tưới NaCl từ 0,2-0,4%, đã làm giảm kích thước các chỉ tiêu theo dõi, từ đó làm giảm khả năng hút, vận chuyển nước và muối khoáng trong cây. Ở mức mặn nhẹ (tưới NaCl 0,2%) cây Thổ sâm có những biến đổi về cấu tạo giải phẫu để thích nghi như: giảm mật độ khí khổng, tăng độ dày gân lá và đường kính trụ thân. Bên cạnh đó, những biến đổi về mặt giải phẫu khi được bón bổ sung nấm rễ AMF giúp cây trao đổi nước thuận lợi trong điều kiện thường và giảm thiệt hại của mặn trên cây Thổ sâm cao ly.

    Tài liệu tham khảo

    Ahmad K.S., Hameed M., Fatima S., Ashraf M., Ahmad F., Naseer M. & Akhtar N. (2016). Morpho-anatomical and physiological adaptations to high altitude in some Aveneae grasses from Neelum Valley, Western Himalayan Kashmir. Acta Physiologiae Plantarum. 38: 93.

    Ali I., Abbas S.Q., Hameed M., Naz N., Zafar S. & Kanwal S. (2009). Leaf anatomical adaptations in some exotic species of Eucalyptus L. (Myrtaceae).Pakistan Journal of Botany. 41: 2717-2727.

    Assaha D.V.M., Mekawy A.M.M., Liu L., Noori M.S., Kokulan K.S., Ueda A., Nagaoka T.& Saneoka H. (2016). Na+Retention in the Root is a Key Adaptive Mechanism to Low and High Salinity in the Glycophyte, Talinum paniculatum(Jacq.) Gaertn. (Portulacaceae). Journal of Agronomy and Crop Science. 203(1): 56-57.

    Atabayeva S., Nurmahanova A., Minocha S., Ahmetova A., Kenzhebayeva S., Aidosova S., Nurzhanova A., Zhardamalieva A., Asrandina S., Alybayeva R. and Li T. (2013). The effect of salinity on growth and anatomical attributes of barley seedling (Hordeum vulgare L.). African Journal of Biotechnology.12:2366-2377.

    Augé R.M., Toler H.D. & Saxton A.M. (2014). Arbuscular mycorrhizal symbiosis and osmotic adjustments in response to NaCl stress: a meta-analysis. Front. Plant Sci. 5: 562-576.s

    Boughalleb F., Denden M. & Tiba B.B. (2009). Anatomical changes induced by increasing NaCl salinity in three fodder shrubs, Nitraria retusa, Atriplex halimus and Medicago arborea. Acta Physiologiae Plantarum. 31: 947-960.

    Bùi Thị Cúc, Bùi Thị Thu Hương & Đồng Huy Giới (2017). Nghiên cứu đặc điểm, hình thái, giải phẫu liên quan đến khả năng chịu hạn của một số giống lily nhập nội. Tạp chí Nông nghiệp và Phát triển Nông thôn. 1 + 2: 58-61.

    Chaves M.M., Flexas J. & Pinheiro C. (2009). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann. Bot. 103: 551-560.

    Cuni S.A., Haq N.& Assogbadjo A.E. (2013). Variation in baobab (Adansonia 311 digitata L.) leaf morphology and its relation to drought tolerance.Genetic Resources and Crop evolution.57(1): 17-25

    Evelin H., Kapoor R. & Giri B. (2009). Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Annals of Botany. 104(7): 1263-1280.

    Food and Agriculture Organization (FAO) (2015). Status of the Worlds’s Soil Resources 808 (SWSR). Main Report, United Nations

    Gómez-Bellot M.J., Nortes P.A., Ortuño M.F.,Romero C.,Fernández-García N. & Sánchez-Blanco M.J. (2015). Influence of arbuscular mycorrizal fungi and treated wastewater on water relations and leaf structure alterations of Viburnum tinusL. plants during both saline and recovery periods. J. Plant Physiol. 188: 96-105.

    Hameed M., Ashraf M.& Naz N.(2009). Anatomical adaptations to salinity in cogon grass [Imperata cylindrica(L.) Raeuschel] from the Salt Range, Pakistan. Plant and Soil. 322(1): 229-238.

    Junghans U., Polle A., Düchting P., Weiler E., Kuhlman B. & Gruber F. (2006). Adaptation to high salinity in poplar involves changes in xylem anatomy and auxin physiology. Plant Cell Environ.29(8): 1519-1531.

    Khalloufi M., Martínez-Andújar C., Lachal M., Karray-Bouraoui N., Pérez-Alfocea F. & Albacete A. (2017). The interaction between foliar GA3 application and arbuscular mycorrhizal fungi inoculation improves growth in salinized tomato (Solanum lycopersicumL.) plants by modifying the hormonal balance. J. Plant Physiol. 214: 134-144.

    Liu F., Qiyuan L., Liang X., Huang H. & Zhang S. (2005). Morphological, anatomical, and physiological assesssment of ramie (Boehmeira nivea (L.) Gaud.) tolerance to soil drought. Genetic Resources and Crop Evaluantion. 52(5): 497-506.

    Mohamed I.A., Shalby N., MA El-Badri A., Saleem M.H., Khan M.N., Nawaz M.A., Qin M., Agami R.A., Kuai J. & Wang B. (2020). Stomata and xylem vessels traits improved by Melatonin application contribute to enhancing salt tolerance and fatty acid composition of Brassica napusL. Plants. Agronomy. 10(8): 1186.

    Manuhara Y.S.W., Yachya A. & Kristanti A.N. (2012). Effect of aeration and inoculum density on biomass and saponin content of Talinum paniculatumGaertn. hairy roots in balloon-type bubble bioreactor. J Pharm Biomed Sci. 2(4): 47-52.

    Nguyễn Nghĩa Thìn (2007). Các phương pháp nghiên cứu thực vật. Nhà xuất bảnĐại học Quốc gia.

    Ramos M.P.O., Silva G.D.F.,Duarte L.P.,Peres V., Miranda R.R.S., Souza G.H.B., Belinelo V.J. &Filho S.A.V. (2010). Antinociceptive and edematogenic activity and chemical constituents of Talinum paniculatumWilld. Journal of Chemical and Pharmaceutical Research.2(6): 265-274.

    Rewald B., Rachmilevitch S., McCue M.D. & Ephrath J.E. (2011). Influence of saline dripirrigation on fine root and sap-flow densities of two mature olive varieties. Environmental and Experimental Botany. 72(2): 107-114.

    Richard L.A. (1954). Diagnosis and Improvement of Saline and Alkalis Soils. Agric. Handbook 60, US Dept. Agric., Washington DC. 160p.

    Rodriguez H.G., Mondal B., Sarkar N.C., Ramaswamy A., Rajkumar D. & Maiti R.K. (2012). Comparative morphology and anatomy of few mangrove species in sundarbans, West Bengal, India and its adaptation to saline habitat. International Journal of Bio-Resource and Stress Management. 3(1): 1-17.

    Ruíz-Lozano J.M., Porcel R., Azcón C. & Aroca R. (2012). Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. Journal of Experimental Botany.63(11):4033-4044.

    Shabala L., Mackey A., Tian Y., Jacobsen S.E., Zou D. & Shabala S. (2012). Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (Chenopodium quinoa). Physiol. Plant. 146(1): 26-38.

    Trần Công Khánh (1981). Thực tập hình thái giải phẫu thực vật. Nhà xuất bảnĐại học và Trung học chuyên nghiệp.

    Vũ Thị Như Trang & Chu Hoàng Mậu (2017).Nghiên cứu tạo rễ tơ ở cây thổ nhân sâm Việt Nam (Talinum paniculatumGaertn.) Tạp chí Khoa học ĐHQGHN: Khoa học Tự nhiên và Công nghệ.33(2S):233-241.